Daubechies Wavelets on Intervals with Application to BVPS
نویسندگان
چکیده
منابع مشابه
Application of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملGeneralized biorthogonal Daubechies wavelets
We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. We consider a dual pair of such multiresolutions, where the scaling functi...
متن کاملImage enhancement with symmetric Daubechies wavelets
It is shown that analyses based on Symmetric Daubechies Wavelets (SDW) lead to a multiresolution form of the Laplacian operator. This property, which is related to the complex values of the SDWs, gives a way to new methods of image enhancement applications. After a brief recall of the construction and main properties of the SDW, we propose a representation of the sharpening operator at di erent...
متن کاملComplex Daubechies Wavelets : Filters Design
The rst part of this work describes the full set of Daubechies Wavelets with a particular emphasis on symmetric (and complex) orthonormal bases. Some properties of the associated complex scaling functions are presented in a second part. The third and last part describes a multiscale image enhancement algorithm using the phase of the complex multiresolution representation of the 2 dimension sign...
متن کاملapplication of daubechies wavelets for solving kuramoto-sivashinsky type equations
we show how daubechies wavelets are used to solve kuramoto-sivashinsky type equations with periodic boundary condition. wavelet bases are used for numerical solution of the kuramoto-sivashinsky type equations by galerkin method. the numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 2004
ISSN: 0862-7940,1572-9109
DOI: 10.1023/b:apom.0000048123.48173.c7